Tools > Collectors
Data Collectors.
This module provides utility functions for data collection.
StationDataCollector
Data collector for weather stations in Brazil.
This class is designed to collect, validate, transform, and save data from CSV files related to weather stations across Brazil. It utilizes a Pydantic model for data validation to ensure the integrity and accuracy of the data collected.
Parameters:
input_folder : str Directory containing the source CSV files. output_path : str Directory where processed files will be saved. file_name : str Base name for the output file. column_names : Dict[str, str] Mapping from original column names to desired column names. schema : BaseModel Pydantic model used for validating the data.
Attributes:
_input_folder : str Input directory for source CSV files. _output_path : str Output directory for processed data. _file_name : str Base name for the output file. _schema : BaseModel Pydantic model for data validation. _column_names : Dict[str, str] Column name mapping.
Source code in app/tools/collectors.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
__init__(input_folder, output_path, file_name, column_names, schema)
Initialize a new StationDataCollector instance.
Parameters:
input_folder : str Directory containing the source CSV files. output_path : str Directory where processed files will be saved. file_name : str Base name for the output file. column_names : Dict[str, str] Mapping from original column names to desired column names. schema : BaseModel Pydantic model used for validating the data.
Source code in app/tools/collectors.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
get_data()
Get data from CSV files.
Returns:
tuple[List[pd.DataFrame], List[str]] A tuple containing a list of DataFrames representing the data and a list of strings representing the file names.
Raises:
ValueError If no CSV files are found in the specified directory.
Source code in app/tools/collectors.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
load_data(validate_data, load_path, file_name)
Save the validated data to a Parquet file.
Parameters:
validate_data : pd.DataFrame DataFrame containing validated station data. load_path : str Path to the folder where the Parquet file will be saved. file_name : str Name of the output file without the extension.
Raises:
Exception If there is an error converting data to Parquet.
Source code in app/tools/collectors.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
start()
Initiate the data collection process.
This method orchestrates the workflow of data collection including retrieving, validating, transforming, and storing data.
Source code in app/tools/collectors.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
transform_data(all_data, column_names, output_path, data_files)
Transform and validate the collected data.
Parameters:
all_data : List[pd.DataFrame] List of DataFrames to be transformed. column_names : Dict[str, str] Mapping of original column names to new names. output_path : str Path to the folder where the processed data will be saved. data_files : List[str] List of file names being processed.
Returns:
pd.DataFrame Concatenated and validated DataFrame.
Raises:
Exception If all collected data is invalid.
Source code in app/tools/collectors.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
validate_data(all_data)
Validate the structure of the collected data.
Parameters:
all_data : List[pd.DataFrame] List of DataFrames to be validated.
Raises:
ValueError If the structure of any DataFrame is inconsistent.
Source code in app/tools/collectors.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
WeatherDataCollector
Data collector for weather in Brazil.
This class is designed to collect, validate, transform, and save data from CSV files related to weather stations across Brazil. It utilizes a Pydantic model for data validation to ensure the integrity and accuracy of the data collected.
Parameters:
input_folder : str Directory containing the source CSV files. output_path : str Directory where processed files will be saved. file_name : str Base name for the output file. column_names : Dict[str, str] Mapping from original column names to desired column names. schema : BaseModel Pydantic model used for validating the data.
Attributes:
_input_folder : str Input directory for source CSV files. _output_path : str Output directory for processed data. _file_name : str Base name for the output file. _schema : BaseModel Pydantic model for data validation. _column_names : Dict[str, str] Column name mapping.
Source code in app/tools/collectors.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
__init__(input_folder, output_path, file_name, column_names, schema)
Initialize a new StationDataCollector instance.
Parameters:
input_folder : str Directory containing the source CSV files. output_path : str Directory where processed files will be saved. file_name : str Base name for the output file. column_names : Dict[str, str] Mapping from original column names to desired column names. schema : BaseModel Pydantic model used for validating the data.
Source code in app/tools/collectors.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
get_data()
Get data from CSV files.
Returns:
tuple[List[pd.DataFrame], List[str]] A tuple containing a list of DataFrames representing the data and a list of strings representing the file names.
Raises:
ValueError If no CSV files are found in the specified directory.
Source code in app/tools/collectors.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
load_data(validate_data, load_path, file_name)
Save the validated data to a Parquet file.
Parameters:
validate_data : pd.DataFrame DataFrame containing validated station data. load_path : str Path to the folder where the Parquet file will be saved. file_name : str Name of the output file without the extension.
Raises:
Exception If there is an error converting data to Parquet.
Source code in app/tools/collectors.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
start()
Initiate the data collection process.
This method orchestrates the workflow of data collection including retrieving, validating, transforming, and storing data.
Source code in app/tools/collectors.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
transform_data(all_data, column_names, output_path, data_files)
Transform and validate the collected data.
Parameters:
all_data : List[pd.DataFrame] List of DataFrames to be transformed. column_names : Dict[str, str] Mapping of original column names to new names. output_path : str Path to the folder where the processed data will be saved. data_files : List[str] List of file names being processed.
Returns:
pd.DataFrame Concatenated and validated DataFrame.
Raises:
Exception If all collected data is invalid.
Source code in app/tools/collectors.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
|
validate_data(all_data)
Validate the structure of the collected data.
Parameters:
all_data : List[pd.DataFrame] List of DataFrames to be validated.
Raises:
ValueError If the structure of any DataFrame is inconsistent.
Source code in app/tools/collectors.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
|
collect_years_list(list_years)
Extract the valid years from a list.
This function collects years beginning in 2000 and ending in the year from the last month. It filters out any years that are not integers or are outside the valid range.
Parameters
list_years : List[int] List with the years that will be processed.
Returns
List[int] A list containing only the valid years within the specified range.
Raises
ValueError If the list is empty or contains no valid years.
Source code in app/tools/collectors.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
|
limit_years()
Calculate the valid year range for data collection.
Determines the earliest year from which data can be collected and the latest valid year based on the current date.
Returns
tuple[int, int] A tuple containing two integers: - The first integer is the earliest year from which data collection is valid. - The second integer is the latest valid year for data collection based on the current date.
Source code in app/tools/collectors.py
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|